



# Fluid Film Bearing Damage

## **Excessive Bearing Temperatures**



### **Coking of Oil on Surface**

Oxidation of oil resulting in plating at the hot spot; also check for electrostatic discharge damage

#### **Potential Solutions**

- Adjust operating conditions to lower the temperature
- Use copper chromium (CuCr) backing to remove heat more guickly
- Use 'Directed Lubrication' to reduce heating
- Change to offset pivot to increase cool oil flow through pad
- Assess bearing alignment
- Check for electrostatic discharge

## Creep

Combination of high temperature and high load causes whitemetal lining to deform

- Check the bearing load
- Use a lining material with higher temperature capability; below are standard maximum temperatures
  - Whitemetal: 130°C (266°F)
  - Aluminum tin (AISn): 160°C (320°F)
  - Polymer: 250°C (482°F)
- Maintain post-lubrication flow



#### **Melted Lining** Heat soak through the housing melts the whitemetal lining

## detrimental, but prolonged and severe faceting can lead to cracking

## **Potential Solutions**

**Thermal Faceting** 

Unique to tin-based whitemetal:

the tin's grain axes; typically not

caused by differential expansion in

- Investigate reasons for regular changes to load or temperature (e.g., repeated start-up and shutdown, dynamic misalignment, liquid slugs)
- Analyze whitemetal composition and microstructure
- Use a lining material with greater fatigue strength, such as AISn or polymer







**Pivot Wear** 

on each pad

Shaft orbiting in the bearing

clearance results in pivot marking

**Rotating Load or** 

## **Thermal or Mechanical Fatigue**





## **Intergranular Cracking**

Cracking and pullout of whitemetal grains; a thin layer of whitemetal may remain, or in the case of poor bonding, bare steel may be exposed





**Uneven Wear** Angled damage, unevenly distributed across the bearing

#### **Potential Solutions**

- Correct the machine's alignment
- Use a bearing with greater misalignment capability (e.g., tilt pad bearing, ball and socket pivot)



Polish Characterized by polish across all bearing pads; can lead to intergranular cracking and wiping

#### **Potential Solutions**

- Take steps to reduce the rotating load
- Align thrust collar to shaft
- Consider using ISFD<sup>®</sup> technology an integral squeeze film damper to improve rotordynamics
- Consider using a Flexure Pivot<sup>®</sup> bearing to reduce pivot wear



Wiping Excessive operating load ruptures film, resulting in contact between bearing and collar

### **Potential Solutions**

- Reduce load
- Investigate and address causes of dynamic loading
- Check that the hydrostatic jacking system is operating properly
- Increase bearing size to increase load capacity
- Reduce pivot contact stress with Flexure Pivot<sup>®</sup> bearings or ball and socket pivot

## **Electrostatic Discharge**





Frosting Discharge on right side of pad shows typical "frosting"

Pitting A magnification of the "frosting" shows pitting

## **Potential Solutions**

- Investigate the grounding of the rotor and insulation at each bearing
- Replace metallic pads with polymer-lined pads for polymer's insulating properties
- Install Inpro/Seal<sup>®</sup> Smart<sup>™</sup> CDR<sup>®</sup> technology

## **Particles in the Lubricant**



**Scoring / Abrasion** Continuous circumferential scratches in the bearing surface from dirt at high speed; wandering tracks from low speed operation

### **Potential Solutions**

- Avoid contamination of bearing surface and oil ways during assembly
- Properly flush bearing and housing
- before operating
- Improve full-flow filtration or install a filter



**Black Scab / Wire Wool** Build-up of black scab machines away mating surface into wire wool

## **Potential Solutions**

 Sleeve the mating surface with mild steel or hard chrome plating



## Wiping

On tilt pads, wiping caused by overloading is typically seen in conjunction with pivot deformation

## **Inadequate Lubrication**





Wiping Wiping on journal and thrust pads from a loss of film

## **Potential Solutions**

- Ensure adequate and continuous oil supply
- Install header tank or back-up pump to prevent interruption of oil supply during power loss
- Use alternate materials that can accommodate short disruptions in lubrication



**Pivot Wear** Can result in increased clearance, leading to vibration

## Corrosion





Hydrogen sulfide in the oil attacks

the copper in the bearing alloy,

creating a soft, dark deposit and

pitting on the bearing surface

H<sub>2</sub>S Corrosion

#### Corrosion

Chemical attack of bearing materials by contaminants (like water) in the lubricating oil

## **Potential Solutions**

- Monitor the oil condition, including water and acid levels
- Implement coalescers or centrifuge to limit contaminants
- Use a bearing material resistant to corrosion, such as AISn or polymer



#### Varnish

Breakdown of lubricant resulting in coating on the bearing surface, often including non-load carrying surfaces

## Cavitation



**Erosion** 

Caused by the formation and collapse of vapor bubbles in the oil film due to rapid pressure changes

#### **Potential Solutions**

- Increase oil feed pressure
- Improve the bearing's streamline flow
- Reduce running clearance
- Change to a harder bearing material
- Modify geometry in bearing and housing to limit pressure changes

## **Start-up Issues**



Leaves

Overload at each start-up or rundown

can lead to build-up of "leaves" of

whitemetal on trailing edge

### **Contact Wear**

Wear seen across all pads; caused by transient loss of clearance during quick start-up due to differential expansion between hot shaft and pads and cold housing

## **Potential Solutions**

- Install hydrostatic jacking system
- Use larger bearing to handle start-up loads
- Consult bearing engineer regarding design clearance
- Use alternate materials, like polymer, that provide higher load capacity at start-ups and stops

Note: Whitemetal includes both lead- and tin-based bearing alloys. The most common whitemetal for fluid film bearings is tin-based babbitt, which includes copper and antimony.

This poster is intended to show potential solutions to investigate with a bearing professional. No guarantee is given or implied with respect to such information.

### **Consult the experts in bearing repairs, replacements and upgrades.** Call 713.948.6000 or email info@bearingsplus.com.

To read more about bearing damage, visit www.bearingsplus.com/damage. Bearings Plus, Inc. | 11951 North Spectrum Blvd., Houston, TX 77047 USA | www.bearingsplus.com

## EXPERT ENGINEERING. PROVEN RESULTS<sup>®</sup>.



A Waukesha Bearings Business